Definicja: Układ równań nieoznaczony Układ równań liniowych z dwiema niewiadomymi, którego rozwiązaniem jest nieskończenie wiele par liczb, nazywamy układem nieoznaczonym. Przykład 5 Poszukajmy teraz rozwiązań układu równań. Każde z równań układu przekształcamy równoważnie doprowadzając do najprostszej postaci.
Wyznacz macierz odwrotną do macierzy A = 1 1 5 3 2 2 1 . 2 2. Wyznacz równanie ogólne płaszczyzny o równaniu parametrycznym x = 5 + t + 2s y=2 gdzie t, s ∈ R. z = −t + s, 3. Dla jakich wartości parametru a ∈ R układ równań 3x + (1 + 2a)y + (2 + a)z = 1 + 2a x + ay + z = a ma nieskończenie wiele rozwiązań? ax + y + z = −a −
rozwiązanie. Układ równań {2x-3y=5; -4x+6y=-10; A. nie ma rozwiązań. B. ma dokładnie jedno rozwiązanie. C. ma dokładnie dwa rozwiązania. D. ma nieskończenie wiele rozwiązań. Układ równań oznaczony, sprzeczny i nieoznaczony .
Zadanie tekstowe z układem równań: brak rozwiązania. Google Classroom. Układy równań mogą służyć do rozwiązywania wielu prawdziwych problemów. W tym filmie rozwiązujemy zadanie dotyczące fabryki zabawek. W tym wypadku nasze zadanie w zasadzie nie ma rozwiązania, co oznacza, że przedstawiona sytuacja jest niemożliwa.
Układ równań 4x + 2y = 10 6x + ay = 15 (oczywiscie to sie bierze w klamrę) ma nieskończenie wiele rozwiązań, jeśli a) a= −1 b) a= 0
Aby dowiedzieć się dla jakiego parametru \(a\) układ równań ma nieskończenie wiele rozwiązań, musimy doprowadzić do sytuacji w której pierwsze i drugie równanie będą miały identyczną postać. W tym celu musimy np. pierwsze równanie pomnożyć obustronnie przez \(-3\). Całość będzie wyglądać następująco: \begin{cases}
Ponieważ 0 = 0 dla dowolnej wartości x, układ równań ma nieskończenie wiele rozwiązań. Co to znaczy, że nie ma prawdziwych rozwiązań? Zauważmy, że kwadratura bez rozwiązania rzeczywistego może mieć wykres całkowicie poniżej osi x (w takim przypadku jednym z warunków jest to, że a 2 – 2x + 2 = 0 nie ma rozwiązania
Układ równań {2x+6y=14} {x+3y=7} jest nieoznaczony. Co mozna powiedzieć o rozwiązaniach tego układu? a) Rozwiązaniem tego układu jest jedna para liczb: x=1 i y=2. b) Rozwiązaniem tego układu są dwie pary liczb: x=1 i y=2 oraz x=4 i y=1. c) Układ nie ma rozwiązania. d) Układ ma nieskończenie wiele rozwiązań.
Rozwiązywanie równań kwadratowych przez dopełnianie do kwadratu, gdy współczynnik przy wyrazie kwadratowym ≠ 1. Rozwiązywanie równań kwadratowych przez dopełnianie do kwadratu: równania bez rozwiązań. Dowód wzoru na pierwiastki równania kwadratowego. Rozwiązywanie równań kwadratowych przez dopełnienie do kwadratu.
1.Które z poniższych równań ma jedno rozwiązanie, które ma nieskończenie wiele rozwiązań, a które nie ma rozwiązań: (trzeba je najpierw rozwiązać): a) 3-4x = -2(2x-5) 3-4x= -4x+10-4x+4x=7. 0=7. Równaie sprzeczne b) 2x/3 + x/6 = 3x/2 /*6. 4x+x= 9x. 5x=9x-4x=0 c) -3(x+4) + 5x= 2(x-6)-3x-12+5x= 2x-12. 2x-12=2x-12. 0=0. Rówanie
MXla. - At you can join numerous contests with valuable prizes! - Joining the website also provides access to the Mathematics Knowledge Base – the database will be regularly expanded, and its content is under the guidance of mathematicians. - You can add your own math-related content. Once checked by the teachers, other website users will use them. - By adding your content on our website you have access to the equation editor! To join a contest, you must log in to your account at the website. Then open the "Contests" tab in the menu at the top of the site. This will open a list of contests. Clicking "View" will open the details of a selected contest. A description, prizes available to win, and contest entry topics are available there. Here you can select and book a topic for which you want to prepare a contest entry.
Definicja 1: Układem dwóch równań pierwszego stopnia z dwiema niewiadomymi x i y nazywamy koniunkcję takich równań i oznaczamy:{a1x + b1y=c1{a2x+b2y=c2Gdzie a12+b12>0 i a22+b22>0Definicja 2: Rozwiązaniem układu dwóch równań pierwszego stopnia z dwiema niewiadomymi nazywamy każdą parę liczb (x,y), która spełnia jednocześnie oba równania układu. Rozwiązać układ równań pierwszego stopnia z dwiema niewiadomymi to wyznaczyć wszystkie jego rozwiązania, albo stwierdzić , że zbiór rozwiązań jest mamy układ dwóch równań, które mają postać wzoru funkcji liniowej, to rozwiązać go znaczy po prostu znalezienie punktu wspólnego wykresów obu funkcji, w przypadku równania pierwszego stopnia takie rozwiązanie może być jedno, czyli wykresy przecinają się w wspólnym punkcie, nieskończenie wiele, czyli wykresy nachodzą na siebie, lub mogą nie mieć rozwiązania, czyli wykresy nigdy się nie spotykają. Na powyższym wykresie dwie proste przecinają się w jednym punkcie, współrzędne tego punktu (x, y) są jedynym rozwiązaniem układu równań. Jest to układ oznaczonyNa powyższym wykresie proste się pokrywają, czyli każda para liczb spełniające jedno z równań, spełnia też drugie, rozwiązań takiego układu jest nieskończenie wiele, jest to układ nieoznaczony. Na powyższym wykresie proste są równoległe, nigdy się nie spotkają, więc taki układ nie będzie miał rozwiązania, taki układ jest 1: Jeżeli z jednego równania układu wyznaczamy jedną niewiadomą i podstawimy otrzymane wyrażenie do drugiego równania zamiast tej niewiadomej, to układ równań złożony z pierwszego równania i tak przekształconego drugiego równania jest równoważny 1 Mamy układ równań , teraz staramy się obliczyć x lub y, w tym przypadku najłatwiej będzie obliczyć y., teraz nasz obliczony y podstawiamy do pierwszego równania. , teraz możemy obliczyć nasz x, pozostaje nam obliczyć y, w ten sposób obliczyliśmy x i 2: Jeśli obie strony jednego z równań pomnożymy przez dowolną liczbę różną od zera, a następnie otrzymane równanie drugie równanie dodamy stronami, i tak otrzymanym równaniem zastąpimy dowolne z równań układu, to otrzymamy układ równań równoważny 2Mamy układ równań:, teraz pomnóżmy równanie 2 razy 2, otrzymamy wtedy:, teraz dodajmy oba równania stronami:, możemy już bez problemu obliczyć x, teraz obliczmy y:, to są rozwiązania naszego układu równańKolejnym sposobem może być rozwiązanie układu równań za pomocą wyznacznika macierzy:, taki układ równań możemy zapisać w prostokątnej tablicy zwanej macierzą., jednak w praktyce lepiej posługiwać się macierzą kwadratową (na studiach ogarniesz czemu J), w tym przypadku będzie to wyglądało tak:, , , z macierzy kwadratowej można obliczyć jej 3: Wyznacznikiem macierzy nazywamy liczbę ad-cb, którą oznaczamy(Pamiętaj że symbol macierzy różni się od symbolu wyznacznika macierzy.) Przykład 3 Oblicz wyznacznik macierzy Korzystając ze wzoru z definicji mamy:5*3-(-5*2)=15-(-10)=15+10=25Wróćmy do naszego układu równań: , a12+b12>0 i a22+b22>0 Wprowadźmy teraz pewne oznaczenia:W= Wx= Wy=Twierdzenie 3: Układ równań pierwszego stopnia z dwiema niewiadomymi , a12+b12>0 i a22+b22>0 Ma tylko jedno rozwiązanie, jeśli W≠0, jest to układ Cramera Ma nieskończenie wiele rozwiązań, jeśli W=Wx=Wy=0Nie ma rozwiązań, jeśli W=0 i (Wx≠0 lub Wy≠0)Przykład 4 Rozwiąż układ równań:Zaczynamy od obliczenia wyznaczników:W= Wx= Wy= W= 11*(-34) –((-22)*32)=-374+704=330Wx=68*(-34)-(8*32)=-2312-256=-2568Wy=11*8-((-22)*68)=88+1496=1584x= y=Zadania do zrobienia1. Rozwiąż układy równań metodą podstawiania Odp. 2. Rozwiąż układy równań metodą przeciwnych współczynników Odp. układ sprzeczny3. Rozwiąż układy równań metodą graficzną Odp. 4. Rozwiąż układy równań, stosując wyznaczniki a) b) Odp. a) b)5. Dopisz brakujące równanie układu tak, aby powstały układ równań: a) był sprzecznyb) był nieoznaczonyc) był oznaczony
Zadanie blockedSprawdz, czy równanie ma nieskończenie wiele rozwiązań, czy nie ma rozwiązań. Równania niemające rozwiązań podkreśl Sprawdz, czy równanie ma nieskończenie wiele rozwiązań, czy nie ma rozwiązań. Równania niemające rozwiązań podkreśl a)3x-1=2x+(x-4) b)-x+2+(x+5)=4x-4(x+3) c)7-5(x+2)+3(x+3)=-2x+6 d)5(2x-3)-7x+15=3(x-8)+24 e)4x-22=14-(3x+2)-7(5-x) szkolnaZadaniaMatematyka Odpowiedzi (1) maalinkowa a)3x-1=2x+(x-4)3x-1=2x+x-40=-3b)-x+2+(x+5)=4x-4(x+3) -x+2+x+5=4x-4x-120=19c)7-5(x+2)+3(x+3)=-2x+6 7-5x-10+3x+9=-2x+60=0d)5(2x-3)-7x+15=3(x-8)+24 10x-15-7x+15=3x-24+240=0e)4x-22=14-(3x+2)-7(5-x)4x-22=14-3x-2-35+7x0=-1;) :) :) o 19:44